Контроль обеспечения радиационной безопасности

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Контроль обеспечения радиационной безопасности». Если у Вас нет времени на чтение или статья не полностью решает Вашу проблему, можете получить онлайн консультацию квалифицированного юриста в форме ниже.

Настоящая общая фармакопейная статья рассматривает вопросы радиационного контроля лекарственного растительного сырья (ЛРС) и лекарственных растительных препаратов (ЛРП), в том числе и сборов из ЛРС, применяемых в сфере обращения лекарственных средств.

  1. Настоящие Методические указания МУ 2.6.1.14-2001 «Контроль радиационной обстановки. Общие требования» разработаны творческим коллективом под эгидой Методического совета Департамента безопасности и чрезвычайных ситуаций Министерства Российской Федерации по атомной энергии.
  2. Руководитель работы: к.т.н., с.н.с. Коваленко В.В., НИЦ «СНИИП».
  3. Исполнители:

к.т.н., с.н.с. В.В. Коваленко, НИЦ «СНИИП»;

к.т.н., с.н.с. Л.В. Артеменкова, НИЦ «СНИИП»;

к.т.н., с.н.с. В.И Лапшин, НИЦ «СНИИП»;

И.П. Мысев, НИЦ «СНИИП»;

к.т.н., с.н.с. В.И. Петров, НИЦ «СНИИП»;

д.т.н., с.н.с. Б.В. Поленов, НИЦ «СНИИП»;

к.т.н., с.н.с. В.М. Скаткин, НИЦ «СНИИП»;

к.т.н., с.н.с. Ю.П. Федоровский, НИЦ «СНИИП»;

Л.И. Цудечкис НИЦ «СНИИП»;

к.т.н., с.н.с. Ю.В. Абрамов, ГНЦ РФ «Институт биофизики»;

к.м.н., с.н.с. А.В. Симаков, ГНЦ РФ «Институт биофизики»;

А.Г. Цовьянов ГНЦ РФ «Институт биофизики»;

к.ф. -м.н., с.н.с. В.А. Кутьков (РНЦ КИ),

к.т.н., чл.-корр. Метрологической академии России Масляев П.Ф.,

ГНЦ РФ «ВНИИФТРИ»

Архипов В.А., ОИЯИ;

Панфилов А.П., Минатом РФ;

Баранов И.В., Минатом РФ.

  1. Методические указания утверждены Федеральным управлением медико-биологических и экстремальных проблем (Федеральное Управление «Медбиоэкстрем») при Минздраве России «26» марта 2001 г.
  2. Настоящие методические указания разработаны в соответствии с требованиями следующих законов Российской Федерации:

4.1. Контроль радиационной обстановки на радиационных объектах, который должен соответствовать требованиям НРБ-99 и ОСПОРБ-99, является неотъемлемой частью системы обеспечения радиационной безопасности, направленной на охрану здоровья людей от воздействия ИИИ и, по возможности, на поддержание работы радиационного объекта и его отдельных технологических систем в рамках оптимального технологического регламента. Он предполагает радиометрический и дозиметрический контроль, осуществляемый приборами и автоматизированными системами.

Его техническая реализация в виде системы контроля радиационной обстановки является измерительно-информационной подсистемой системы обеспечения радиационной безопасности предприятия, предназначенной для поддержки принятия решений по обеспечению радиационной безопасности.

4.2. Радиационная обстановка на любом радиационном объекте определяется совокупностью контролируемых радиационных параметров, характеризующих уровень опасности их воздействия на персонал, население и окружающую среду при нормальной работе радиационного объекта и при радиационной аварии.

Контроль радиационной обстановки на радиационных объектах зависит от категории объекта, от особенностей технологических производственных процессов, от потенциальной радиационной опасности объекта. Контроль радиационной обстановки должен осуществляться за всеми радиационными параметрами, характеризующими уровни облучения персонала и населения и загрязнение окружающей среды.

Контроль радиационной обстановки должен проводиться в производственных помещениях радиационного объекта, на его территории, в санитарно-защитной зоне и зоне наблюдения.

4.3. Основные цели контроля радиационной обстановки определяются сложившейся обстановкой в зоне контроля и/или динамикой ее изменения.

4.3.1. В условиях слабого изменения контролируемых радиационных параметров в пределах нормативных уровней контроль радиационной обстановки проводится в целях:

  • надзора за соблюдением норм, правил радиационной безопасности и квот при осуществлении деятельности с использованием ИИИ или технологического оборудования, содержащего радиоактивные среды и вещества;
  • документальной фиксации значений контролируемых радиационных параметров в НРО;
  • оперативного выявления признаков развития аварийной ситуации, в особенности – на потенциально радиационно-опасных объектах;
  • оценки воздействия радиационных факторов на персонал, население и окружающую среду.

4.3.2. При относительно быстром изменении радиационной обстановки и/или формирование аварийной радиационной обстановки контроль проводится в целях:

  • оперативного выявления происходящих изменений, их причин и степени их опасности;
  • прогноза дальнейших изменений и возможных последствий для персонала и/или определенного контингента населения;
  • определения необходимых мер по обеспечению радиационной безопасности и нормализации радиационной обстановки;
  • выбора и обоснования мер по оказанию медицинской помощи.

4.3.3. После принятия мер по улучшению и нормализации радиационной обстановки контроль проводится в целях:

  • оценки эффективности принятых мер и реабилитационных мероприятий;
  • перехода к работе с реализацией целей по п.4.3.1;
  • прогноза негативных медико-демографических последствий и обоснования реабилитационных мероприятий;
  • выявления медико-демографических последствий от радиационного воздействия.

4.4. Основные задачи контроля радиационной обстановки, обеспечивающие достижение перечисленных выше целей, следующие.

4.4.1. Контроль соответствия измеренных значений радиационных параметров установленным (заданным) значениям этих параметров (проектным, нормативным, контрольным, предшествующим уровням значений радиационных параметров).

4.4.2. Документальная фиксация АСКРО, аппаратурой или персоналом значений контролируемых радиационных параметров в НРО и, в особенности, в АРО.

7.1. Классификация по контролируемому радиационному параметру:

– контроль эквивалентной (экспозиционной) дозы или эквивалента амбиентной дозы;

– контроль мощности эквивалентной (экспозиционной) дозы или мощности эквивалента амбиентной дозы;

– контроль плотности потока ионизирующих частиц;

– контроль поверхностной активности радионуклидов;

– контроль объемной активности радиоактивного аэрозоля (паров);

– контроль объемной активности радиоактивных газов;

– контроль объемной активности радионуклидов в воздухе;

– контроль удельной активности радионуклидов в жидкостях;

– контроль удельной активности радионуклидов в твердых телах;

– контроль активности радионуклидов, содержащихся в организме, органе;

– контроль плотности радиоактивного загрязнения почвы;

– контроль энергетического распределения ионизирующего излучения (спектрометрия) – при необходимости;

– контроль двух и более параметров, обеспечиваемых средствами одной функциональной группы (комбинированные).

7.2. Классификация по виду ионизирующего излучения:

  • контроль альфа-излучения;
  • контроль электронного (бета-) излучения;
  • контроль фотонного излучения;
  • контроль нейтронного излучения;
  • контроль смешанного излучения.

7.3. Классификация приборов по назначению при эксплуатации:

– средства измерения;

– индикаторы.

7.4. Классификация по временному характеру контроля:

– непрерывный оперативный контроль;

– эпизодический (инспекционный) контроль;

– периодический (текущий) контроль.

7.5. Классификация технических средств контроля по исполнению, связанному с местом размещения и способом применения при эксплуатации:

  • стационарные (в том числе лабораторные);
  • переносные;
  • средства для индивидуального контроля;
  • носимые, в т. ч. передвижные или подвижные (в т. ч. для аварийных ситуаций).

Как проводится радиационный контроль

На предприятиях 1 и 2 класса опасности применяются следующие средства для измерения радиационного излучения:

  • стационарные автоматизированные установки – осуществляют непрерывный контроль
  • передвижные и переносные технические средства применяют для оперативного контроля
  • лабораторная аппаратура используется для исследования проб, взятых для анализа

На объектах, где существует возможность самопроизвольной цепной реакции, где радиационная обстановка может кардинально изменяться в течении одной смены, устанавливают приборы радиационного контроля со световыми и звуковыми сигналами. Они незамедлительно оповещают персонал об опасности.

Радиационный контроль должен осуществляться постоянно. На предприятии должны регулярно выполняться и поддерживаться меры по снижению доз облучения и защите работников от опасных излучений. Обычно выполняются следующие мероприятия:

  • теневая защита в виде стационарных и переносных экранов
  • средства индивидуальной защиты, специальная одежда и обувь
  • дистанционное управление и инструмент
  • ограничение времени взаимодействия с радиоактивными волнами и ионизирующим излучением

Радиационный контроль дает возможность определить эффективность применяемых мер защиты.

Методические указания «Ионизирующее излучение, радиационная безопасность. Контроль радиационной обстановки. Общие требования» разработаны с целью создания нормативного документа, формулирующего общие требования к аппаратуре и организации контроля радиационной обстановки на предприятиях Минатома России на основе «Норм радиационной безопасности (НРБ-99)» и «Основных санитарных правил обеспечения радиационной безопасности (ОСПОРБ-99)», а также концепций и подходов, принятых в Публикации № 60 МКРЗ 1990 года и в Международных Основных Нормах Безопасности для защиты от ионизирующих излучений и безопасности источников излучений 1996 года.

Для обеспечения единства методических подходов и полноты обеспечения радиационной безопасности рассматриваются основные требования к организации и объему контроля при нормальной и аварийной ситуации, а также технические требования к аппаратуре контроля радиационной обстановки, вопросы метрологического обеспечения измерений и требования к представлению и хранению информации о результатах контроля радиационной обстановки.

Данные методические указания разработаны в развитие и с учетом общих требований и принципов организации, планирования и проведения дозиметрического контроля, изложенных в Методических указаниях;

• «Определение индивидуальных эффективных и эквивалентных доз и организация контроля профессионального облучения в контролируемых условиях обращения с источниками излучения. Общие требования» (МУ 2.6.1.016-2000);

• «Дозиметрический контроль внешнего профессионального облучения. Общие требования» (МУ 2.6.1.25-2000).

• «Дозиметрия. Контроль внутреннего облучения профессиональных работников. Общие требования» (МУ 2.6.1.026-2000).

Читайте также:  Правила провоза наличных денег в самолете

Утверждены Руководителем департамента безопасности и чрезвычайных ситуаций
Минатома России А.М. Агаповым 29 ноября 2000 г.
Утверждены Заместителем Главного государственного санитарного врача России по
специальным вопросам М.Б. Муриным. 09 декабря 2000 г.
Согласованы Директором Центра метрологии ионизирующих излучений
ГП «ВНИИФТРИ» В.П. Ярыной 07 декабря 2000 г.

2.6.1. Ионизирующее излучение, радиационная безопасность

КОНТРОЛЬ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ.
ОБЩИЕ ТРЕБОВАНИЯ

Методические указания
МУ 2.6.1.14-2001

8.1. Основные технические требования к средствам контроля радиационной обстановки содержатся в следующих основополагающих стандартах:

ГОСТ 4.59-79-СПКП. Средства измерений ионизирующих излучений. Номенклатура показателей.

ГОСТ 27451-87. Средства измерений ионизирующих излучений. Общие технические условия.

ГОСТ 29074-91. Аппаратура контроля радиационной обстановки. Общие требования.

ГОСТ 27452-87. Аппаратура контроля радиационной безопасности на атомных станциях. Общие технические требования.

ГОСТ 26344.0-84. Аппаратура ядерного приборостроения для атомных станций. Основные положения.

ГОСТ 24525.4-80. Управление охраной окружающей среды. Основные положения.

ГОСТ 12.1.048-85. Контроль радиационный при захоронении радиоактивных отходов. Номенклатура контролируемых параметров.

В отдельных случаях могут быть приняты другие значения суммарной относительной погрешности рабочих средств измерения с учетом специфики измерения контролируемых параметров, особенностей пробоотбора, динамики изменения радиационной обстановки и т.п.

Таблица 1. Требования к контролю параметров радиационной обстановки.

ИЗМЕРЕНИЕ РАДИОАКТИВНОСТИ ПОМЕЩЕНИЙ

Для проверки уровня радиации в помещениях проводят измерения ионизирующих факторов: гамма-фона (гамма-съемка ограждающих строительных конструкций и МЭД — мощность эквивалентной дозы МЭД), ЭРОА радона и торона.

Ионизирующие излучения — это такие разновидности излучений, которые в определенных средах превращают атомы и молекулы в ионы. Такая ионизация атомов и молекул происходит при ядерных реакциях и при ядерном распаде отдельных химических элементов.

Ионизирующие излучения наносят большой вред здоровью человека. Некоторые болезни от их воздействия могут развиться быстро, другие — лишь спустя многие годы. Это, прежде всего, лейкозы, лучевая болезнь, раковые опухоли, наследственные заболевания (не проявлявшиеся ранее). У будущих поколений высока вероятность появления генных мутаций и различных болезней.

Чтобы защитить человека от возможных ионизирующих излучений, перед заселением жилого дома или запуском предприятия нужно сделать проверку на радиацию.

Чтобы осуществить контроль радиоактивного загрязнения, в каждое помещение входят специалисты с приборами (поисковыми и профессиональными дозиметрами, радиометрами радона и торона) и собирают показания.

Физические методы контроля сварных швов

Радиационная дефектоскопия — рентгено- и гамма-графичес­кий метод контроля.Рентгено- и гамма-графия — это метод получения на рентгеновской пленке или экране изображения предмета (изделия), просвечиваемого рентгеновским или гам­ма-излучением. Он основан на способности рентгеновского и гамма-излучения проходить через непрозрачные предметы, в том числе через металлы, и действовать на рентгеновскую пленку и некоторые химические элементы, благодаря чему последние флуоресцируют (светятся).

При этом дефекты, встречающиеся при сварке в теле изделия и чаще всего имеющие характер пустот (непроваров, трещин, раковин, пор и т. д.), на рентгеновской пленке (на рентгенограммах) имеют вид пятен (раковины, поры) или полос (непроваров).

Как правило; просвечивают 3 — 15% общей длины сварного шва. У особо ответственных конструкций просвечивают все швы.

Рентгеновские аппараты, применяемые для контроля из­делий, состоят из рентгеновской трубки, источника питания и пульта управления. В качестве источника питания при­меняют повышающий трансформатор, во вторичную цепь которого включают кенотроны для выпрямления анодного тока и высоковольтные конденсаторы, позволяющие удвоить или утроить напряжение вторичной обмотки трансформатора. Схема просвечивания рентгеновским излучением изделия показана на рис. 120.

В зависимости от режима просвечивания (при толщине металла До 50 мм), качества пленки и правильности даль­нейшей ее обработки удается выявить дефекты размером 1 — 3% от толщины контролируемых деталей.

В настоящее время широкое применение нашли рентгенов­ские аппараты РУП-120-5-1, РУП-200-5, РУП-400-5, Мира-2Д и Мира-3Д и др.

Гамма-излучение образуется в результате внутриатомного распада радиоактивных веществ. В качестве источников гамма-излучения применяют следующие радиоактивные вещества: тулий-170, иридий-192, цезий-13 7, кобальт-60 для просвечивания металла толщиной 1-60 мм.

Гамма-излучение, действуя на пленку так же, как и рентгеновское, фиксирует на ней дефекты сварки. Чувствитель­ность гамма-контроля ниже чувствительности рентгеновских снимков; например, на гамма-снимках при просвечивании стали толщиной 10-15 мм кобальтом-60 выявляются дефекты глубиной 0,5 — 0,7 мм, тогда как на рентгеновских снимках видны дефекты глубиной 0,1-0,2 мм.

Чувствительность гамма-снимков, полученных при помощи радиоактивных изотопов — тулия-170, иридия-192 и других, приближается к чувствительности рентгеновских.

Гамма-излучение вредно для здоровья человека, поэтому ампулы с радиоактивным веществом помещают в специаль­ные аппараты — гамма-установки, имеющие дистанционное управление (рис. 121).

Схема панорамного просвечивания сварных стыков трубо­проводов с помощью гамма-источника показана на рис. 122.

Алгоритм выполнения и меры безопасности

Работы по выявлению дефектов и отклонений радиационным методом, регламентируются ГОСТ 7512-86 и поэтапно выполняются лабораториями, аттестованными в соответствии с ПБ 03-372-00 и ПБ 03-440-02:

  1. Подготовка объекта к просвечиванию посредством очищения его поверхности от мусора и ржавчины
  2. Визуальный осмотр с разметкой и маркировкой участков объекта для дальнейших исследований
  3. Контролируемые сварные швы размещают между излучателем и приемником устройства
  4. Аппаратура включается, после предварительной проверки ее работоспособности
  5. Рентгеновские лучи проникают сквозь шов и принимаются датчиком, размещенным с обратной стороны
  6. Полученная информация выводится на монитор или рентгеновскую пленку для дальнейшего анализа и хранения

Уровень чувствительности приборов зависит от множества факторов. Он проверяется путем размещения на контролируемом участке различных эталонов чувствительности в заданной последовательности:

  • Проволочных
  • Канавочных
  • Пластинчатых

Работы, связанные с РК, проводятся с соблюдением правил безопасности, предусматривающих:

  • Наличие технологической карты (с алгоритмом действий, схемами зарядки кассет, нормативами)
  • Предварительную проверку исправности оборудования
  • Экранирование задействованной аппаратуры для предотвращения распространения опасных для людей и экосреды излучений
  • Соблюдение безопасной дистанции между специалистами и применяющимися в работе приборами
  • Максимальное сокращение времени пребывания специалистов в потенциально опасных местах
  • Применение СИЗ
  • Ограждение рабочей зоны, определяемой с помощью дозиметров ДКС-АТ, специальной лентой и знаками

Распространение и использование.

Чаще всего для контроля сварных соединений используют рентгеновское излучение. Рентгеновскую дефектоскопию начали применять прежде всего для контроля сварных соединений на предприятиях авиационной промышленности. Опыт, накопленный в рентгеновских лабораториях страны, позволил в 1934 г. создать первые производственные инструкции по просвечиванию рентгеновскими лучами сварных соединений сосудов и аппаратов, работающих под давлением. В послевоенные годы существенно расширились научно-исследовательские и опытно-конструкторские работы в области рентгеновской дефектоскопии, увеличилось производство рентгеновских установок.

Большое влияние на развитие и совершенствование технического рентгеновского просвечивания оказали работы А. К. Трапезникова, его капитальный труд «Рентгенодефектоскопия», работы его учеников и последователей — С. Т. Назарова, С. В. Чернобровова, О. Т. Сильченко, Б. В. Борщева и др. Большой вклад в развитие рентгеновской дефектоскопии вне С. В. Румянцев.

Сравнение пленочной и цифровой радиографии

Начать сравнивать характеристики двух этих методик стоит с самых базовых понятий, таких как выбор анодного напряжения и экспозиции по европейским и российским нормам. Для чистоты эксперимента рассмотрим ситуацию, когда необходимо просветить пластину из стали, толщина которой составляет 25 мм.

Анодное напряжение
По EN 444 260 кВ
По ГОСТ 20426-82 250 кВ
«Барс» 150 кВ

Теперь оценим время просвечивания. При использовании рентгеновской пленки используемое напряжение будет равно 250 кВ, а ток — 0,6 мА. Время просвечивания при этом составит 30 минут. Если же вы воспользуетесь автоматизированной установкой «БАРС», то сможете уменьшить напряжение до 150 кВ, сохранить тот же ток в 0,6 мА, но при этом просвечивание займет всего 6 секунд.

Для наглядной иллюстрации выгоды от применения систем цифровой радиографии приведем еще 1 небольшой пример. Представьте, что вам необходимо провести контроль сварного соединения трубы диаметром 1420 мм и стенками, толщиной в 22 мм.

Физика процесса: как работает рентгеновская дефектоскопия?

Процесс контроля мало чем отличается от использования рентгеновского излучения в медицинских целях, и базируется на тех же физических свойствах коротковолнового электромагнитного ионизирующего излучения. Получение информации происходит следующим образом:

  • В рентгеновской трубке быстрые электроны взаимодействуют с анодом, в результате чего возникает рентгеновское излучение, направляемое к исследуемому объекту с помощью оборудования специальной формы.
  • Лучи, проходя через материал, ослабляются. При этом при прохождении через пустоты, включения других материалов и прочие неоднородности, они ослабляются по-разному.
  • С помощью детектора (пластины, пленки или электронного сенсора) лучи воспринимаются и регистрируются, после чего визуализируются. В зависимости от степени ослабления энергии излучения, при прохождении исследуемых объектов формируется картинка, которая позволяет делать выводы о внутренней структуре объекта.
  • Для получения более детального трехмерного изображения, предмет подвергается лучевому воздействию с разных сторон, в результате чего с помощью современного компьютерного оборудования, возникает возможность наложить результаты исследований и построить модель на основе нескольких проекций.
Читайте также:  Налоговый вычет за роды по контракту

Дефекты и неоднородные элементы на снимках хорошо визуализируются, так как лучи сохраняют больше энергии, проходя через дефективные зоны, по сравнению с прохождением толщи материала (чаще всего стали).

3.1. Радиографический контроль следует проводить после устранения обнаруженных при внешнем осмотре сварного соединения наружных дефектов и зачистки его от неровностей, шлака, брызг металла, окалины и других загрязнений, изображения которых на снимке могут помешать расшифровке снимка.

3.2. После зачистки сварного соединения и устранения наружных дефектов должна быть произведена разметка сварного соединения на участки и маркировка (нумерация) участков.

3.3. Систему разметки и маркировки участков устанавливают технической документацией на контроль или приемку сварных соединений.

3.4. При контроле на каждом участке должны быть установлены эталоны чувствительности и маркировочные знаки.

3.5. Эталоны чувствительности следует устанавливать на контролируемом участке со стороны, обращенной к источнику излучения.

3.6. Проволочные эталоны следует устанавливать непосредственно на шов с направлением проволок поперек шва.

3.7. Канавочные эталоны следует устанавливать на расстоянии не менее 5 мм от шва с направлением канавок поперек шва.

3.8. Пластинчатые эталоны следует устанавливать вдоль шва на расстоянии не менее 5 мм от него или непосредственно на шов с направлением эталона поперек шва так, чтобы изображения маркировочных знаков эталона не накладывались на изображение шва на снимке.

3.9. При контроле кольцевых швов трубопроводов с диаметром менее 100 мм допускается устанавливать канавочные эталоны на расстоянии не менее 5 мм от шва с направлением канавок вдоль шва.

3.10. При невозможности установки эталонов со стороны источника излучения при контроле сварных соединений цилиндрических, сферических и других пустотелых изделий через две стенки с расшифровкой только прилегающего к пленке участка сварного соединения, а также при панорамном просвечивании допускается устанавливать эталоны чувствительности со стороны кассеты с пленкой.

3.11. (Исключен, Изм. № 1).

3.12. Маркировочные знаки, используемые для ограничения длины контролируемых за одну экспозицию участков сварных соединений, следует устанавливать на границах размеченных участков, а также на границах наплавленного и основного металла при контроле сварных соединений без усиления или со снятым усилением шва.

3.13. Маркировочные знаки, используемые для нумерации контролируемых участков, следует устанавливать на контролируемом участке или непосредственно на кассете с пленкой так, чтобы изображения маркировочных знаков на снимках не накладывались на изображение шва и околошовной зоны по п. 5.7.

3.14. При невозможности установки эталонов чувствительности и (или) маркировочных знаков на контролируемом участке сварного соединения в соответствии с требованиями настоящего стандарта порядок проведения контроля без установки эталонов чувствительности и (или) маркировочных знаков должен быть предусмотрен в технической документации на контроль или приемку сварных соединений.

(Измененная редакция, Изм. № 1).

6.1. Просмотр и расшифровку снимков следует проводить после их полного высыхания в затемненном помещении с применением специальных осветителей — негатоскопов.
Следует использовать негатоскопы с регулируемыми яркостью и размерами освещенного поля. Максимальная яркость освещенного поля должна составлять не менее 10Д+2 кд / м 2 , где Д — оптическая плотность снимка. Размеры освещенного поля должны регулироваться при помощи подвижных шторок или экранов-масок в таких пределах, чтобы освещенное поле полностью перекрывалось снимком.

6.2. Снимки, допущенные к расшифровке, должны удовлетворять требованиям:

  • на снимках не должно быть пятен, полос, загрязнений и повреждений эмульсионного слоя, затрудняющих их расшифровку;
  • на снимках должны быть видны изображения ограничительных меток, маркировочных знаков и эталонов чувствительности;
  • оптическая плотность изображений контролируемого участка шва, околошовной зоны и эталона чувствительности должна быть не менее 1,5;
  • уменьшение оптической плотности изображения сварного соединения на любом участке этого изображения по сравнению с оптической плотностью изображения эталона чувствительности не должно превышать 1,0.

6.3. Чувствительность контроля (наименьший диаметр выявляемой на снимке проволоки проволочного эталона, наименьшая глубина выявляемой на снимке канавки канавочного эталона, наименьшая толщина пластинчатого эталона, при которой на снимке выявляется отверстие с диаметром, равным удвоенной толщине эталона), не должна превышать значений, приведенных в табл. 6.

Радиационная толщина (в месте установки эталона чувствительности) Класс чувствительности
1 2 3
До 5 0,10 0,10 0,20
Св. 5 до 9 включ. 0,20 0,20 0,30
» 9 » 12 » 0,20 0,30 0,40
» 12 » 20 » 0,30 0,40 0,50
» 20 » 30 » 0,40 0,50 0,60
» 30 » 40 » 0,50 0,60 0,75
» 40 » 50 » 0,60 0,75 1,00
» 50 » 70 » 0,75 1,00 1,25
» 70 » 100 » 1,00 1,25 1,50
» 100 » 140 » 1,25 1,50 2,00
» 140 » 200 » 1,50 2,00 2,50
» 200 » 300 » 2,00 2,50
» 300 » 400 » 2,50

Примечание. При использовании проволочных эталонов чувствительности значения 0,30; 0,60; 0,75 и 1,50 мм заменяются значениями 0,32; 0,63; 0,80 и 1,60 мм.

Конкретные значения чувствительности должны устанавливаться технической документацией (требованиями чертежей, техническими условиями, правилами контроля и приемки) на контролируемые изделия.

Для атомных энергетических установок требования к чувствительности устанавливаются соответствующими нормативными документами.

Контроль облучения организуется в целях получения информации о дозах облучения личного состава, раненых и больных. Он осуществляется при действиях личного состава в условиях воздействия ионизирующих излучений: в мирное время – при проведении работ с источниками ионизирующих излучений, в военное время – при ведении боевых действий в условиях применения ядерного оружия, а также при авариях (разрушениях) на объектах ядерно-энергетического цикла.

Контроль облучения подразделяется на войсковой и индивидуальный. Войсковой (или групповой) контроль облучения осуществляется в военное время с целью получения информации об облученности личного состава и оценки боеспособности подразделений в ходе выполнения задачи. Групповой метод контроля заключается в том, что по показаниям 1-2 дозиметров делается вывод об облучении группы военнослужащих (отделение, экипаж) или группы раненых и больных, находящихся примерно в одинаковых условиях облучения.

Индивидуальный контроль основан на измерении дозы облучения каждого человека. В мирное время он проводится только в воинских частях, проводящих работы с источниками ионизирующих излучений, в военное время – во всех воинских частях. Индивидуальный контроль предусматривает получение информации об индивидуальных дозах облучения при медицинской сортировке раненых и больных на этапах медицинской эвакуации, при проведении медицинских обследований личного состава и при выполнении работ с источниками ионизирующих излучений.

Информация о дозах облучения личного состава используется как для предотвращения облучения личного состава свыше установленных предельно допустимых доз (в мирное время), так и для оценки поражающего действия ионизирующих излучений на личный состав войск. На основании информации о дозах облучения личного состава осуществляются:

— оценка боеспособности по радиационному фактору и определение порядка дальнейшего использования воинских частей (подразделений) и отдельных военнослужащих, подвергшихся воздействию ионизирующих излучений;

— планирование пополнения войск личным составом;

— ранняя диагностика степени тяжести острых лучевых поражений личного состава и медицинская сортировка раненых (пораженных) на этапах медицинской эвакуации;

— определение необходимого объема лечебно-эвакуационных мероприятий для лиц, подвергшихся воздействию ионизирующих излучений;

— оценка состояния радиационной безопасности при работах с источниками ионизирующих излучений и планирование этих работ;

— оценка состояния здоровья личного состава, работающего с источниками ионизирующих излучений.

Организация контроля облучения заключается в обеспечении личного состава измерителями дозы, в своевременном снятии показаний измерителей доз и их перезарядке, поддержании технической исправности приборов, систематическом учете доз облучения. В качестве технических средств контроля облучения для проведения войскового контроля облучения применяются общевойсковые измерители дозы, для проведения индивидуального контроля облучения – индивидуальные измерители дозы. специалистами службы радиационной, химической и биологической защиты.

Дозы облучения, полученные личным составом, ежесуточно регистрируются в журнале учета доз. Периодически суммарная доза с указанием даты переносится в карточку учета доз, которая находится в военном билете или удостоверении личности военнослужащего. На этапах медицинской эвакуации осуществляется индивидуальный контроль облучения. Индивидуальный контроль проводится с целью получения данных для установления тяжести лучевой болезни, последующей сортировки и определения необходимых лечебно-эвакуационных мероприятий. В некоторых случаях индивидуальный и групповой методы контроля не позволяют оценить дозу облучения пораженных, поступивших на этапы медицинской эвакуации, и использовать ее для оценки степени тяжести лучевой болезни. Поэтому при опасности облучения для ранней диагностики лучевого поражения, независимо от метода общевойскового контроля облучения, все военнослужащие обеспечиваются индивидуальными дозиметрами ИД-11 или ДП-70МП, а все медицинские подразделения, части и учреждения медицинской службы обеспечиваются измерительными устройствами для снятия показаний этих дозиметров.

Читайте также:  Правила съема: как арендовать квартиру и не оказаться в суде

Снятие показаний индивидуальных дозиметров ИД-11 или ДП-70МП осуществляется специально подготовленным фельдшером (санитарным инструктором) при медицинской сортировке раненых (пораженных) и при проведении медицинских обследований. Определение доз облучения раненых (пораженных) производится до осмотра врачом.

Доза облучения, полученная пораженным, записывается в первичную медицинскую карточку или историю болезни, а дозиметр возвращается пораженному. При выписке из медицинских частей (учреждений) суммарная доза облучения (полученная до поступления и за время пребывания в лечебном учреждении) переносится в карточку учета доз.

При опасности воздействия отравляющих, высокотоксичных или радиоактивных веществ в подразделениях, частях и учреждениях медицинской службы осуществляется войсковой контроль химического и радиационного заражения воды и продовольствия. Войсковой химический и радиационный контроль воды и продовольствия – это установление их зараженности отравляющими, высокотоксичными или радиоактивными, веществами с помощью приборов химической и радиационной разведки с целью решения вопроса о возможности использования по назначению, необходимости проведения специальной обработки воды и продовольствия или дальнейшего их исследования в ходе санитарно-токсикологической и санитарно-радиологической экспертизы.. В тех случаях, когда медицинский состав не может сделать окончательное заключение на месте, производится отбор проб воды и продовольствия для направления их в санитарно-эпидемиологические учреждения для проведения санитарно-токсикологической или санитарно-радиологической экспертизы.

Войсковой контроль и экспертиза воды для питьевых и санитарно-технических нужд при подозрении на химическое или радиоактивное заражение проводится в обязательном порядке. Контроль и экспертиза продовольствия осуществляется, если продовольствие находилось в районах применения противником оружия массового применения, в районах аварий (разрушений) радиационно и химически опасных объектов, если поступают трофейные продукты питания или имеется подозрение на заражение продовольствия диверсионным путем, а также при необходимости оценки остаточного заражения после специальной обработки продуктов питания.

Химический контроль и экспертиза воды и пищевых продуктов в подразделениях и частях медицинской службы (медицинском пункте , ОМП) производится с помощью прибора МПХР (ПХР-МВ), а в санитарно-эпидемиологических учреждениях – с помощью полевой лаборатории МПХЛ. Радиационный контроль осуществляют с помощью прибора ДП-5В, ИМД-5, которыми оснащаются все подразделения и части Вооруженных Сил (в том числе, и медицинские), а санитарно-радиологическую экспертизу – с помощью прибора ИМД-12.

Химическое заражение водоисточников возможно с помощью химических средств нападения (бомбы, снаряды, ракеты и т.п.), диверсионным путем, а также за счет попадания в них вод, стекающих с зараженной территории. Не исключено применение противником в целях морального воздействия так называемых денатурирующих веществ, которые в эффективных дозах не ядовиты, но могут делать воду непригодной для питья, придавая ей неприятный вкус и запах (вещества типа хлорфенола, многие водорастворимые красящие вещества).

Степень зараженности воды зависит от ряда факторов, главными из которых являются химическая природа и физическое состояние ОВТВ, гидролитическая устойчивость, количество яда, попавшего в водоем, характер водоснабжения.

Заражение открытых водоемов отравляющими и высокотоксичными веществами возможно при их применении в капельно-жидком и аэрозольном состоянии. Химическое заражение происходит при непосредственном попадании ОВТВ в источник воды, а также с дождевыми и талыми водами. Небольшие непроточные водоемы (озера, пруды, особенно колодцы) могут быть заражены ОВТВ на срок, исчисляемый неделями и месяцами, а заражение крупных и быстротекущих рек опасными концентрациями этих веществ практически не осуществимо. Вода в трубчатых и хорошо закрытых шахтных колодцах глубиной не менее 5-6 м практически остается незараженной, однако при значительных плотностях заражения местности ФОВ, а также при подозрении на диверсионные акции эти источники воды подлежат контролю на зараженность.

Химические вещества, гидролиз которых протекает с образованием нетоксичных продуктов (фосген, дифосген), практически не вызывают заражения воды. Трудно гидролизуемые ОВ, например, вещества типа Vx, дают устойчивое и длительное заражение. Зоман и зарин быстро и полностью растворяются в воде, сохраняясь, как и Vx, в водных растворах летом, весной и осенью неделями, а зимой – месяцами. Сернистый иприт в воде летом сохраняется около 1 ч, весной и осенью – 4-6 ч, зимой – 14-16 ч. Азотистый иприт и его соли могут сохраняться в воде более длительное время.

Плотность заражения пищевых продуктов зависит от физико-химических свойств, агрегатного состояния ОВТВ в момент контакта с пищевым продуктом, характера упаковки, длительности воздействия токсиканта и свойств конкретного продукта.

Отравляющие и высокотоксичные вещества могут заражать пищевые продукты в капельно-жидком, аэрозольном и парообразном состоянии. Капельно-жидкое заражение продовольствия возможно при разрыве химического боеприпаса вблизи места хранения продуктов, а также при разбрызгивании ОВТВ с помощью выливных авиационных приборов. Заражение продуктов питания парами и аэрозолями ОВТВ возможно при хранении их в складских помещениях и упаковках, проницаемых для аэрозолей и паров отравляющих веществ, как вблизи разрыва химического боеприпаса, так и на значительном удалении вследствие движения облака по направлению ветра. Не исключена возможность заражения запасов продовольствия диверсионным путем.

Отравляющие и высокотоксичные вещества хорошо сорбируются пищевыми продуктами и длительное время сохраняются в них. Особенно большую опасность представляют стойкие ОВТВ (Vx, зоман, иприт), которые могут вызывать опасное заражение пищевых продуктов на несколько суток, недель и даже месяцев. Нестойкие ОВТВ типа фосгена в силу своей летучести сохраняются в пищевых продуктах недлительное время, однако такие продукты для немедленного использования могут оказаться непригодными. Большую опасность представляют продукты питания, зараженные жидкой синильной кислотой, в связи с образованием нелетучих солей синильной кислоты. Хлорацетофенон, бромбензилцианид и другие раздражающие вещества, включая и мышьяксодержащие, при воздействии на продукты питания долго оставляют в них свой неприятный запах, но не вызывают опасного заражения. Сернистый иприт в парообразном, туманообразном и капельно-жидком виде вызывает весьма устойчивое заражение пищевых продуктов, особенно жиросодержащих. Пары иприта проникают в зерно и крупы на глубину до 10 см, в муку – до 6 см, в твердые продукты (мясо, рыба, хлеб) – на 1-2 см. В жирах и маслах капельно-жидкий иприт, а также его аэрозоли в силу своей липидофильности растворяются очень быстро, постепенно распространяясь по всей массе.

Стеклянная и металлическая тара полностью защищает от ОВТВ продукты, хранящиеся в ней (бидоны, бочки, консервные банки), а также в герметично закрытых емкостях (термосы, бидоны). Упаковка из картона и бумаги, полиэтиленовые мешки, деревянные и фанерные ящики не защищают продукты от ОВТВ. В незащищенные сыпучие пищевые продукты (крупа, мука, зерно и др.) ОВТВ в зависимости от агрегатного состояния проникают на глубину 1-7 см, в толщу мяса – на 2-5 см, в овощи – на 0,5-2 см, а в жиросодержащих продуктах очень быстро растворяются и заражают всю их массу. В ранние сроки после воздействия ОВТВ на незатаренное продовольствие и продукты в наибольшей степени заражаются поверхностные слои. С течением времени зараженность этих слоев снижается, а более глубоких возрастает, в связи с чем, необходимо избегать перемешивания поверхностных слоев с глубокими, так как это ухудшает условия для десорбции отравляющего вещества и увеличивает время сохранения его в продукте.

Заражение воды и продовольствия радиоактивными веществами возможно при выпадении радиоактивных осадков ядерного взрыва и при действиях на радиоактивно-зараженной местности, а также при совершении диверсионных или террористических актов. Наиболее опасно заражение открытых водоемов и незатаренного продовольствия. В воде и жидких пищевых продуктах радиоактивные вещества растворяются, заражая их на всю глубину, а в твердых и сыпучих пищевых продуктах чаще всего происходит заражение лишь поверхностных слоев.

При отборе проб воды и продовольствия в районе заражения отравляющими, высокотоксичными или радиоактивными веществами необходимо соблюдение мер предосторожности с использованием средств индивидуальной защиты. Отбор проб на экспертизу проводится со строгим учетом данных химической разведки: где, когда и с использованием какого ОВТВ был нанесен химический удар противника.


Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *